Math 2 Unit 5 Worksheet 2 **Properties of Parallelograms**

[1-5] The given figures are all parallelograms. Solve for the variable(s) in each diagram, then state the property of parallelograms that allowed you to solve for the variable(s).

1.

x = _____

Property:

DG = 2x + 2, DE = 3x + 1, EF = 3x - 3, GF = 2x + 6

x = _____

Property:

3.

a = _____

Property:

4.

x = _____

y = _____

Property:

5.

x = _____

y = _____

Property: _____

7.

8.

9.

136° 44°

10.

11.

[12-15] For what values of x and y must each figure be a parallelogram?

$$x = ____ 15.$$

$$y =$$
 $y =$ $y =$ $y =$ y

$$x =$$

16. A classmate draws a parallelogram for which one side is twice as long as the other. If one side is 26 units, what are all the possible lengths of the perimeter?

17. Complete the two-column proof.

Given: Parallelogram ABCD with $\overline{AC} \cong \overline{BD}$ Prove: $\triangle ADC \cong \triangle BCD$

Statement	Reason
1. Parallelogram $ABCD$ with $\overline{AC} \cong \overline{BD}$	1. Given
2.	Opposite sides of parallelograms are congruent.
$3. \overline{DC} \cong \overline{CD}$	3.
4.	4. SSS

Math 2 Unit 5 Worksheet 2